Sodium-dependent D-aspartate 'binding' is not a measure of presynaptic neuronal uptake sites in an autoradiographic assay.
نویسندگان
چکیده
The binding of D-[3H]aspartate to sections of rat brain was examined in an autoradiographic assay. Binding was entirely dependent on the presence of sodium ions, but not chloride ions, and was optimal at 2 degrees C. D-Aspartate bound rapidly, reached equilibrium within 20 min and remained stable for 45 min. The rate of dissociation was relatively rapid with a t1/2 of 56 s, but was not as fast as anticipated, perhaps because of some sequestration of ligand. Binding had a Kd of 6.8 +/- 1.2 microM and a Bmax of 49.4 +/- 8.6 pmol/mg protein. The high Bmax value may further indicate some sequestration of D-aspartate. L-Glutamate, unlabeled D-aspartate, and D,L-threo-hydroxyaspartate, a potent inhibitor of synaptosomal uptake, each competed for D-[3H]aspartate binding with IC50s of 7.0 +/- 4.3 microM, 5.4 +/- 1.5 microM, and 2.5 +/- 1.0 microM, respectively. N-methyl-D-aspartate (NMDA), quisqualate, and kainate had no affinity for this site. The regional distribution of D-aspartate binding sites was unique and did not conform to the distribution of neuronal uptake sites described by others. Striatal D-aspartate binding was unaffected by unilateral decortication or striatal quinolinic acid lesions. In contrast, binding to NMDA, quisqualate, and kainate receptors was reduced by 80-90% by quinolinate lesions of the striatum. The results of D-aspartate binding after lesions strongly suggest that this site is not associated with either lesioned glutamatergic afferents or intrinsic neurons of the striatum; it may be associated with glia.
منابع مشابه
Autoradiographic localization of voltage-dependent sodium channels on the mouse neuromuscular junction using 125I-alpha scorpion toxin. I. Preferential labeling of glial cells on the presynaptic side.
Alpha-scorpion toxins bind specifically to the voltage-sensitive sodium channel in excitable membranes, and binding is potential-dependent (Catterall, 1984). The radioiodinated toxin II from the scorpion Androctonus australis Hector (alpha ScTx) was used to localize voltage-sensitive sodium channels on the presynaptic side of mouse neuromuscular junctions (NMJ) by autoradiography using both lig...
متن کاملL-glutamate: a neurotransmitter candidate for cone photoreceptors in the monkey retina.
In order to examine whether L-aspartate and L-glutamate are photoreceptor transmitters in monkey retina, we have carried out two different studies: an autoradiographic localization of the high-affinity uptake sites for aspartate (Asp) and glutamate (Glu), and an immunocytochemical localization of the biosynthetic enzyme, L-aspartate aminotransferase (AAT). Our results show that L-Glu is taken u...
متن کاملCharacterization of [3H]desipramine binding associated with neuronal norepinephrine uptake sites in rat brain membranes.
A variety of evidence indicates that [3H]desipramine can label neuronal norepinephrine uptake sites in brain membranes. Pretreatment of rat cerebral cortical membranes with 0.3 M KCl increases the ratio of high affinity to low affinity saturable [3H]desipramine binding. With this improved tissue preparation, we have confirmed our earlier observation that the high affinity [3H]desipramine bindin...
متن کاملRegional distribution and properties of [3H]MK-801 binding sites determined by quantitative autoradiography in rat brain.
[3H]MK-801 binding in rat brain was characterized using a quantitative autoradiographic binding assay. [3H]MK-801 binding (5 nM) reached equilibrium by 120 min at 23 degrees C. [3H]MK-801 appeared to label a single high affinity site with an affinity constant of approximately 11 nM. [3H]MK-801 binding was heterogeneously distributed throughout the brain with the following order of binding densi...
متن کاملEffects of spironolactone and fludrocortisone on neuronal and glial toxicity induced by N-methyl-D-Aspartate and chloroquine in cell culture
Spironolactone has produced beneficial effects in animal models of neurodegenerative disorders. However, the underlying mechanisms of this agent on neurons and glia are mostly unknown. Therefore, we aimed to show the effects of spironolactone and fludrocortisone, a mineralocorticosteroid receptor agonist, on neuronal and glial toxicity induced by N-methyl-D-aspartate (NMDA) activation and chlor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain research
دوره 511 2 شماره
صفحات -
تاریخ انتشار 1990